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Abstract--The behaviour of the uniform-field, point-electrode electromagnetic flowmeter with 
two-phase flows is discussed. It is emphasized that, in general, the signal is dependent on the 
velocity profile and on the degrees of uniformity and isotropy of the suspension. The weight 
function distribution of the annular flowmeter is described. 

1. INTRODUCTION 

The use of the electromagnetic flowmeter in a two-phase flow was discussed recently by 
Bernier & Brennen (1983). They concluded that calibration of the flowmeter is both quite 
independent of the flow regime and quite insensitive to the distribution of the disperse 
phase. These conclusions are not in general correct, even when the flow is rectilinear and 
axisymmetric. The purpose of this paper is to clarify the position and to draw attention 
to other relevant work. 

2. THEORY 

The three-dimensional theory of electromagnetic flowmeters given by Bevir (1970, 
1971a) and discussed by Wyatt (1977, 1984) is summarized as follows. The potential 
between two electrodes in a conducting medium which includes a liquid volume specified 
by z in which there is a velocity distribution v and a magnetic field B is 

U = ~, W . v d r ;  [1] 

W is the weight vector--it weights the contribution to U due to the velocity v at every point. 
W is given by 

W = B x j, [2] 

where j is a hypothetical current density known as the virtual current; j is the current 
density that would be set up in the stationary liquid by passing unit current into one 
electrode and extracting it from the other. When j is formulated, it defines mathematically 
the electrodes, the flowmeter boundary and the conductivity distribution within that 
boundary, j weights the effect at the electrodes of elemental B x v generators at every point 
in the liquid. In principle, the concept of virtual current permits any flowmeter problem 
to be solved; it also clarifies the functioning of electromagnetic flow and velocity measuring 
devices. 

3. THE CIRCULAR,  U N I F O R M - F I E L D ,  POINT-ELECTRODE 
FLOWMETER 

Figure 1 illustrates this flowmeter with a cylindrical coordinate system (r, 0, z). The 
electrodes are situated at (b, _+ ~r/2, 0), where b is the pipe radius. The magnetic field of 
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Figure 1. The circular, uniform-field flowmeter with "point"  electrodes at B and C. 

strength B, lies in the direction Ox. We assume that 
v = [0, 0, v (r, 0)]. Then [1] reduces to 

U= W(r,O) v(r,O)rdrdO. 

Here W(r, O) is the rectilinear weight function, given by 

W(r, O) = W~ dz, 
(X3 

the flow is rectilinear, i.e. 

where 

[31 

[4] 

When the flow is axisymmetric as well as rectilinear, v = [0, 0, v(r)] and [3] becomes 

U = 2re W'(r) v(r)r dr, [6] 
0 

where the axisymmetric weight function W'(r) is given by 

lf0~" W'(r) = ~ W(r, 0) dO. [71 

W~ can be written in rectangular coordinates (x, y, z) as 

W~ = Bxjy -- ByJx. [81 

If the field is uniform, Bx = B = constant and By = 0. Since jy is harmonic it follows that 
Wz and therefore W(r, O) are harmonic also. The mean-value theorem for harmonic 
functions immediately gives W'(r)=constant (Bevir 1971a) whence, from [6], U is 
proportional to the flowrate and independent of the velocity distribution when this is 
axisymmetric. The magnitude of the signal obtained from the uniform field flowmeter with 
axisymmetric flow can be most simply found by considering the simplest axisymmetric 
flow, namely that due to a uniform rectilinear velocity field v. Since div B is zero, the line 
integral ~B x v.di is zero also. Therefore, provided the electrodes are of infinitely small 
area, no currents flow in the liquid. Hence j-. 

U = B x v'dl, [9] 
c 

where the line integral is taken from electrode C to electrode B along any path. Thus. 

U = 2Bvb = 2BQ, [10] 
rob 

W .  = B r j  0 - B o j  r. [5] 
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Fig. 2. Normalized rectilinear weight function WTzb/2B of a uniform-field flowmeter with point 
electrodes (Shercliff 1962). 

where Q is the flowrate. This is the relationship between signal and flowrate for any 
axisymmetric flow. The independence of  sensitivity (signal for unit flowrate) on the 
axisymmetric velocity profile is known as the axisymmetric property. 

The response of  the flowmeter to rectilinear flow at various points in the cross-section 
varies widely, even when the axisymmetric property holds. The response is found by 
determination of j with the given boundary conditions and substitution of  this in [5] and 
[4]. This yields Shercliff's weight function (Shercliff 1962): 

2B 1 + R 2 cos 20 
W(R,O)= r~b 1 + 2R2cos 20 + R  4' [11] 

where R = r/b. W(R, O) is shown in figure 2. 

4. A N N U L A R  FLOW 

Figure 3 illustrates a uniform-field flowmeter with a stationary coaxial insulating core, 
which permits flow in the annulus only. It can be shown, by means of Cauchy's integral 
formula, that W'(r) is uniform in the annulus, i.e. the axisymmetric property holds for 
this flowmeter also. If  the electrodes are points, the sensitivity can easily be found. We 
consider the conventional flowmeter with a uniform velocity field. Since in this case no 
actual currents flow, introduction of the insulating coaxial core will not affect the 
flowmeter response with a given velocity. That is, the signal remains the same although 
the flowrate is reduced by the factor (b 2 -  a2)/b 2, whence 

2B b 2 
U =~-~Qb2~a 2. [12] 

This resultt holds for any axisymmetric velocity profile and is in agreement with the result 
quoted by Bernier & Brennen (1983). 

tEquation [12] follows rigorously from [9], which applies in the annulus when v is rectilinear and uniform. 
The line integral is taken along a convenient path in the annulus. 
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Figure 3. Section of a flowmeter with a coaxial, 
insulating core. 
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Figure 4. Normalized rectilinear weight function 
(1-  ~t)Wnb/2B of a uniform-field, annular flow- 
meter with point electrodes, a/b = 0.5. The shaded 
region is insulating. One quadrant only of the cross- 
section is shown, with an electrode at B. The curves 
in the other quadrants are mirror-images (cf. 

figure 2). 

Equation [12] holds if the core consists of a long gas bubble moving with any velocity. 
In this case we can consider the system as one of  two-phase flow, in which the void fraction 
is ct = a2/b 2. The signal can be written 

2B QL 
= - -  ; [ 1 3 1  U lrb 1 - ~  

QL is identical with Q in [12], but the subscript emphasizes that the flow referred to is that 
of  the liquid phase. 

Here also the response to rectilinear flow at different points in the annulus varies widely. 
We can show, by finding the virtual current with the given boundary conditions, that 

W(R, 0) = ~--~ o(-1)'~R2'~cos2mO 

+ ~ (-1)"A,,[R2mcos2mO +R-2("+°cos2(m + i)0]~ [14] 
m=0 ) 

where R = r/b, A,, = ~2,, + */(1 - ~2,, +,) and ~ = a2/b 2. The first series is Shercliffs weight 
function in series form (R < 1). Integration of  W(R,O) to give W'(R) yields 
(2B/nb)bZ/(b 2 - a2), in agreement with [12]. W(R, O) is illustrated in figure 4. The weight 
function is zero at the point where the line BO (which passes through the electrodes) 
intersects the insulating core, because at this point j is zero. Near this point, j is nearly 
parallel to the field, so B x j is relatively small. 

It is evident that the narrower the annulus, the more uniform the virtual current will 
be in regions distant from the electrodes. Also, since B is constant and directed as shown 
in figure 4, we would expect the magnitude of  W to vary approximately as cos0, except 
near the electrodes. These features are demonstrated in figure 5. 

5. CORE FLOW 

Annular flow with an insulating core (section 4) is, strictly speaking, a two-phase flow 
in which the insulating disperse phase is entirely separated from the liquid phase. The 
"reverse" of  this system is shown in figure 6, which illustrates a flowmeter in which the 
interior surface of the wall is bounded by a stationary, poorly-conducting concentration 
of disperse phase, with a well-conducting liquid phase flowing within it. The signal, for 



W n 

10 

0.5 

[15] 

0 5  

0~) 15 30 45 60 ^o  75 90 
0 

Figure 5. Normalized rectilinear weight function W, of a uniform-field, annular flowmeter with 
point electrodes, along an arc midway between the circles bounding the annulus, normalized to 

1 at 0 = 0. a/b = 0.5 and 0.9 (see the text). 

any axisymmetric velocity profile, is (Wyatt 1968) 

2 ~  
2B trD 

U =~-~QL 
2 a___LL 1 -- ~ - ~ . . - - - -  1 

o" D 

f ie ld 

tr L and al~ are, respectively, the conductivities of  the liquid- and disperse-phase concen- 
trations. If trL/aO--*oo and the void factor (b 2 - a 2 ) / b  2 = ~, then 

2B QL 
U = n b  ~" [16] 

1 - - - -  
2 
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Figure 6. Section of a flowmeter illustrating core flow. The dotted area represents the stationary, 
concentrated disperse phase. 
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6. SUSPENSION FLOW 

Consider the virtual current distribution in a stationary, uniform, isotropic suspension 
of equal insulating spheroids which are small in comparison with the flowmeter radius. 
Because the suspension is uniform and isotropic, the virtual current distribution, macro- 
scopically speaking, is not altered by the presence of the spheroids. That is, the virtual 
current entering and leaving any volume of the suspension, large in comparison with a 
spheroid, is not altered. Provided the uniformity of the suspension is maintained when the 
fluid is in motion, the contribution of such a volume to the flowmeter integral [1], will, 
for a given velocity distribution within it, be unchanged and the presence of the spheroids 
will be undetected by the flowmeter. What actually happens, microscopically speaking, is 
that the reduced volumes of liquid between spheroids cause an increase in local mean 
virtual current density; but this is exactly balanced by the reduced volume of  liquid within 
which it occurs, so the contribution to the volume integral remains unchanged for a given 
local velocity and magnetic field. 

If local circulations occur in the suspension when it is flowing, the number of spheroids 
in a given volume will vary. This will lead to local variations in virtual current and 
therefore to variations in the contribution of a given volume of suspension to the volume 
integral. We therefore need to specify some minimum time 6t over which the response of 
the flowmeter is averaged in order to eliminate the effect of such variations. Otherwise 
noise will be observed superimposed on the flowmeter signal, in addition to that due to 
the local velocity variations themselves. 

When the suspension flows, it is possible for forces due to velocity gradients to create 
a non-uniform distribution of  the spheroids (cf. Segr6 & Silberberg 1961; Takano et al. 
1968). This will always alter the virtual current distribution and will in general change the 
flowmeter signal for a given flowrate. 

If the suspended medium consists of  irregularly-shaped bodies instead of spheroids, but 
which still have a maximum dimension small in comparison with the flowmeter radius, and 
which are both uniformly distributed and randomly oriented, it will be clear that we still 
have, macroscopically speaking, a uniform, isotropic suspension. When the suspension 
flows the particles will, in general, tumble and rotate and, if not rigid, deform (Goldsmith 
1967); but provided 6t is sufficiently long, they will not have an effect different from that 
of spheroids. However, particles which are not spheroidal, but which are of regular and 
uniform shape, may interact hydrodynamically with the liquid in such a way that they are 
aligned relative to the flowmeter axis for a disproportionately large part of their rotational 
period. They may thus create an effectively non-isotropic, as well as a non-uniform, 
suspension. This can further alter the effective virtual current distribution and therefore 
change the flowmeter signal. 

Note that nothing that has been said is incompatible with a local relative velocity, or 
+'slippage", between the particles and the liquid. 

7. A U N I F O R M ,  ISOTROPIC SUSPENSION 

It is evident from the preceding section that the signal for this case is 

2B QL 
U = rob 1 - c~" [17] 

8. A U N I F O R M  SUSPENSION OF LONG, T H I N  RODS 
P A R A L L E L  TO THE FLOW 

A uniform suspension of infinitely long, thin, insulating rods which are aligned in a 
rectilinear flow parallel to the flowmeter axis is electrically anisotropic. However, in the 
case of the uniform-field flowmeter this anisotropy has no effect on the signal. The reason 
is that the uniform field flowmeter is a two-dimensional device, i.e. it is infinitely long in 
the direction of its axis. When the flow is rectilinear, no actual currents flow parallel to 
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the axis, so that, apart from increasing the void factor, the length of the rods has no effect. 
Looked at another way, the effective electrodes in a "long" flowmeter are two long strips 
parallel to the axis which pass through the actual electrodes (Bevir 1971a; Wyatt 1984). 
The virtual current of these electrodes flows only in planes normal to the axis. Therefore, 
provided the maximum dimension in the cross-section of the rods is small and they are 
randomly oriented about their axes, the suspension seen by the virtual current in such 
planes is macroscopically uniform and isotropic. Again then, 

2B QL [18] U - n b  l -o~ 

9. A UNIFORM SUSPENSION OF THIN DISCS ALI GNED 
P A R A L L E L  TO THE FLOW 

Dennis & Wyatt  (1969) observed that the sensitivity of a quasi-uniform field electro- 
magnetic flowmeter to the flow of blood was not strictly independent of the haematocrit 
(concentration of red blood cells, or erythrocytes). That is to say, the signal did not strictly 
obey the equation 

2B QL 
U =  

rcb 1 -~x" 

They found that the flowmeter sensitivity depended upon both the haematocrit and the 
flow regime, even when correction was made for the non-uniformity of the magnetic field. 
They ascribed their results to the non-uniform and/or anisotropic distribution of the 
erythrocytes. Figure 7 shows a cross-section of the flowmeter in the electrode plane, 
illustrating sections of uniformly-distributed erythrocytes, approximated by thin discs 
aligned parallel to the (laminar) flow. The figure demonstrates the anisotropy of the 
electrical conductivity of the suspension, due to the difference in the geometrical 
projections of the discs seen in the radial and circumferential directions, respectively. The 
anisotropy will alter the virtual current distribution and therefore the weight function 
distribution and sensitivity of the flowmeter. In practical terms, when the flow is 
non-uniform (but still axisymmetric) the induced currents that actually flow in the 
cross-section when the flowmeter is working will be altered by the anisotropy, leading to 
a difference in signal. When the flow is turbulent, it is likely that the erythrocytes tumble, 
destroying the anisotropy (see section 6). 

f i e ld  
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Figure 7. Cross-section of a flowmeter in which there is a uniform suspension of thin discs which 
have their main surfaces aligned with the rectilinear flow. 
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10. THE THEORY OF FLOWMETER RESPONSE WITH 
NON-UNIFORM AND NON-ISOTROPIC SUSPENSIONS 

The theory has been given by Bevir (1971b). We quote, as one example of the effects 
that can occur, the result for a suspension with a non-uniform, isotropic conductivity 
distribution which varies with radius r (0 < r < 1) in accordance with the power law 

c r ( r ) = l + 2 r  k, 

and in which there is an axisymmetric velocity profile 

v o c  l - - r  n . 

[19] 

[20] 

We give Bevir's result for the signal (his equation [30], quoted here in unnormalized form): 

2B QL [1 2k ] [21] 
U - ~ r b l _ ~  ( k + 2 ) ( k + n + 2 )  " 

This shows that U is dependent both on the conductivity distribution (2, k) and on the 
velocity profile (n). Bevir also gives results for anisotropic, non-uniform conductivity 
distributions together with non-uniform, axisymmetric velocity profiles. An example of this 
applies to the uniform, anisotropic suspension illustrated in figure 7, for which Bevir gives 
the result (his equation [20], quoted here in unnormalized form): 

2B QL 1 
U - [22] 

zcb 1--~ 7- -1  
l + - -  

n + 2  

where 7 2 = tro/tx r. ao and ~rr represent the conductivities of the suspension measured in the 
circumferential and radial directions, respectively; a0 and ar are assumed to be different 
but independent of r. Here we see that U is dependent both on the anisotropy (7) and on 
the velocity profile (n). 

11. DISCUSSION 

The mean velocity of the continuous (liquid) phase in a suspension, whether or not the 
disperse (suspended) phase is uniformly distributed, is Q L / l r b  2 (1 --~), where QL is the 
liquid flowrate and ~t is the void (disperse) fraction. Bernier & Brennen noted the equality 
of [10], [13], [17] and [18] (in their case, the near-equality of [18]). This, together with their 
experimental results, led them to state (see section 1): " . . .  the [uniform-field] electro- 
magnetic meter . . ,  does not only measure the mean velocity of the continuous 
phase. . ,  but this measurement appears to be quite insensitive to the distribution of the 
disperse phase". Also (see the abstract) they state that " . . .  the calibration is quite 
independent o f . . .  axisymmetric velocity profile.. .  ". These inferences are correct when 
the disperse phase consists of uniformly-distributed, small, randomly-oriented particles, 
which create a macroscopically uniform, isotropic suspension. They are not in general 
correct when the suspension is isotropic but non-uniform (see [13], [16], [17] and [21]); or 
when the suspension is uniform but anisotropic (see [22]); or when the suspension is both 
non-uniform and anisotropic (Bevir 1971b). 
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